Yield10 Bioscience Platform: Technologies for Increasing Seed Yield and Oil Content in Oilseeds

Meghna Malik, PhD, Team Leader
Metabolix Oilseeds, the Canadian subsidiary of Yield10 Bioscience

Sept. 10, 2018
The statements made by Yield10 Bioscience, Inc. (the “Company,” “we,” “our” or “us”) herein regarding the Company and its business may be forward-looking in nature and are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements describe the Company’s future plans, projections, strategies and expectations, including statements regarding future results of operations and financial position, business strategy, prospective products and technologies, timing for receiving and reporting results of field tests and likelihood of success, and objectives of the Company for the future, and are based on certain assumptions and involve a number of risks and uncertainties, many of which are beyond the control of the Company, including, but not limited to, the risks detailed in the Company’s Annual Report on Form 10-K for the year ended December 31, 2017 and other reports filed by the Company with the Securities and Exchange Commission (the “SEC”). Forward-looking statements include all statements which are not historical facts, and can generally be identified by terms such as anticipates, believes, could, estimates, intends, may, plans, projects, should, will, would, or the negative of those terms and similar expressions.

Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and may be beyond the Company’s control, you should not rely on these statements as predictions of future events. Actual results could differ materially from those projected due to our history of losses, lack of market acceptance of our products and technologies, the complexity of technology development and relevant regulatory processes, market competition, changes in the local and national economies, and various other factors. All forward-looking statements contained herein speak only as of the date hereof, and the Company undertakes no obligation to update any forward-looking statements, whether to reflect new information, events or circumstances after the date hereof or otherwise, except as may be required by law.

Under the Private Securities Litigation Reform Act of 1995
Yield10 Bioscience (NasdaqCM:YTEN) is developing technologies to enhance global food security

- Headquartered in Woburn, MA USA

Metabolix Oilseeds

(Canadian subsidiary of Yield10 located in Saskatoon, Canada)

Yield10 brings extensive expertise and a track record in optimizing the flow of carbon in living systems to the agriculture sector to increase yield in key row crops

- Yield10 is targeting step-change (10-20%) increases in seed yield

Yield10 focuses on its core strengths of advanced bioscience and innovation
Today’s presentation
Yield10 Technologies for **seed yield** and **oil content**

Specialty oil REVENUE = Oil/acre = seed yield/acre x oil content
SUMMARY OF TRAITS IN DEVELOPMENT

<table>
<thead>
<tr>
<th>Business Area</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Yield Traits-Regulated</td>
<td></td>
</tr>
<tr>
<td>C3003</td>
<td>Camelina, canola, soybean field trials</td>
</tr>
<tr>
<td>Seed Yield Traits-Non-Regulated</td>
<td></td>
</tr>
<tr>
<td>C3004</td>
<td>Camelina testing underway – field trials 2019</td>
</tr>
<tr>
<td>Oil Enhancing Traits-Non-Regulated</td>
<td></td>
</tr>
<tr>
<td>C3007</td>
<td>Camelina, canola editing underway</td>
</tr>
<tr>
<td>C3008a</td>
<td>Camelina non-regulated(^1) status achieved; at field testing stage</td>
</tr>
<tr>
<td>C3008a, C3008b and C3009 combinations</td>
<td>Camelina, editing completed and submission made to USDA-APHIS</td>
</tr>
<tr>
<td>C3010</td>
<td>Completed in-license</td>
</tr>
<tr>
<td>Additional oil traits and combinations</td>
<td>Research in progress</td>
</tr>
</tbody>
</table>

Yield Trait Improvement Discovery Platform

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C4001</td>
<td>Wheat, rice underway, and corn transformation next step</td>
</tr>
<tr>
<td>C4002</td>
<td>Corn transformation next step</td>
</tr>
<tr>
<td>C4003</td>
<td>Wheat, rice underway and corn transformation next step</td>
</tr>
<tr>
<td>C4004</td>
<td>Editing in rice and wheat underway</td>
</tr>
</tbody>
</table>

Metabolic engineering traits C3003/C3004: enhance carbon flux and seed yield

Metabolic engineering traits C3007,8, 9 and 10: increased oil content – niche oil market opportunities

Key element of the GRAIN discovery platform, Transcription factors – seed and biomass yield, stress tolerance

Many opportunities exist for licensing and/or partnerships

\(^1\) not regulated by USDA-APHIS, could be regulated by EPA and/or FDA and/or regulated in the EU, Canada
Novel Yield Trait Gene: C3003

C3003 is a component of an algal system for increasing photosynthesis in low CO₂ conditions

- A mitochondrial metabolite transporter licensed from University of Massachusetts
- C3003 is believed to impact photorespiration
- Has shown double digit increases in seed yield in Camelina and canola
- Potential to be useful in a wide range of C3 crops: Camelina, canola, soybean, wheat, rice and others

Development program for C3003

- Evaluate different constructs to optimize yield impact
- Demonstrate Camelina results translate into canola and soybean
- Execute 2018 Field Tests in oilseed crops to optimize constructs

Scientific progress provides new insights on mechanism

- Expression of C3003 in Camelina induces the expression of the novel gene C3004
2018 Field Tests Underway for C3003 Traits

Metabolix Oilseeds

Conducting Field Tests of C3003 in Camelina and canola

Bulking-up soybean seed

Generate technical data and determine the best way to deploy C3003 in canola and soybean

- Test C3003 Gen 2.0 and Gen 2.1 in Camelina
- Test C3003 Gen 1.0 and Gen 2.0 in canola
- Grow C3003 Gen 1.0 and Gen 2.0 soybean to generate field grown seed for 2019
- Multiple sites in Canada
- Data expected beginning in fourth quarter 2018

Gen 1, expressed throughout plant

Gen 2, seed specific
Photorespiration: a Major Yield Drag in C3 Crops

C3003 is believed to impact photorespiration

What other metabolic approaches can be used to reduce photorespiration?
The Reverse Glyoxylate Shunt (rGS)

- What if we could use a novel microbial reverse glyoxylate shunt (rGS) pathway to eliminate the impact of photorespiration altogether?

- Potential NET Impact: $2\ CO_2 + 2\ HCO_3^- \rightarrow OAA$

- Flux modeling: predicts a 112% increase in seed yield with new pathway under photorespiratory conditions

- 2 vectors were constructed to express 12 transgenes encoding 10 enzyme activities from a seed specific promoter and transformed into Camelina

New pathway engineered into Camelina to increase seed yield

- Metabolix Oilseeds experimental results (12 transgenes) shows seed yield increase of up to 128%
- Experimental multigene system too complicated for regulatory approval and commercialization
- What’s the maximum yield with the minimum number of gene changes?

https://doi.org/10.1007/s00299-018-2308-3

Camelina greenhouse study: Seed yield in best plants
Update on C3004 Trait in Camelina

Generated Preliminary Greenhouse Results for C3004 in Camelina; Field tests Planned for 2019

Background on the C3004 Yield Trait
• C3004 has altered expression in Gen 1 C3003 Camelina plants
• C3004 may be linked to transport of fixed carbon to seed?

Key Questions
• Is C3004 responsible for the smaller seed size in Gen1 C3003 in Camelina, canola and soy?
• Is C3004 a good target for genome editing?
• What is the right combination of C3004 with C3003 to maximize the increase in seed yield?
Expression of C3004 in Camelina Increases Seed Yield

- Up to 65% increase in seed yield observed in C3004 plants compared to control
- Field testing planned for 2019, accelerate C3004 trait into soybean and canola
- Develop data for C3004 + C3003 combinations
- Develop the best strategy to create non-regulated versions of C3004 for key crops

*Student’s t-test, *p<0.05; Data average of 3 to 4 plants per line*
Genome Editing Targets for Increasing Oil Content

For niche oils: cost of goods is driven by harvested oil/acre (= seed yield/acre x seed oil content)

Objective: Develop the best combination of gene edits to maximize oil/acre

C3008a
- Successful editing of all three copies of C3008a in Camelina
 - Camelina is an allohexaploid; each gene expected to be present in 3 copies
 - Received confirmation in 2017 that line is not regulated by USDA-APHIS
 - US field tests in progress, data in Q4

C3008a, C3008b, C3009
- Completed editing of three distinct genes of Camelina designed to increase oil
 - Simultaneous editing of 9 genes (3 target genes present in 3 copies each)
 - Submitted “Am I regulated?” letter to USDA-APHIS in second quarter

C3007 (BADC) and C3010
- Completed exclusive license to IP from University of Missouri (C3007 and C3010)
 - C3007 is a novel negative regulator of ACCase a key enzyme in fatty acid biosynthesis
 - Metabolix Oilseeds is currently editing the C3007 gene in Camelina and canola
C3007 Trait: A Negative Regulator of a Key Enzyme in Oil Biosynthesis

• Acetyl-CoA carboxylase (ACCase) - a key enzyme in oil biosynthesis with a complex, multi-subunit enzyme structure
• BADC (C3007), a key negative regulator of ACCase (Salie, M. et al., 2016, Plant Cell)
• Use genome editing to reduce/eliminate availability of BADC (red squares) to increase the activity of the key ACCase enzyme to increase carbon for fatty acid biosynthetic pathway

Photosynthesis → Acetyl-CoA → Malonyl CoA → Oil biosynthesis

ACCase enzyme

+ BCCP → ACCase activity
+ BADC → ACCase activity

Reduce/eliminate BADC with genome editing

Increased seed oil

ACCase with increased activity

BADC = biotin/lipoyl attachment domain containing proteins
BCCP = biotin carboxyl carrier protein
Summary

• Yield10 and Metabolix Oilseeds are progressing traits to increase seed yield and oil content in oilseed crops

 • Metabolic modeling and research results suggests potential for achieving significant increases in seed yield
 • Field work in progress with C3003 in Camelina, canola and soybean
 • Recent C3004 seed yield results driving accelerated path to field testing in Camelina in 2019 growing season and translation into canola and soybean
 • Using CRISPR-Cas9 genome-editing approach with oil boosting traits for use in canola and niche oils

• Employing both GMO and genome-editing approaches to achieve goals
• Many opportunities exist for licensing, partnerships, and/or collaborations
Yield10 Bioscience Platform: Technologies for Increasing Seed Yield and Oil Content in Oilseeds

Meghna Malik, PhD, Team Leader
Metabolix Oilseeds, the Canadian subsidiary of Yield10 Bioscience

Sept. 10, 2018