Mirel™ PHA Polymeric Modifiers & Additives

AddCom 2014
Barcelona
October 21-22, 2014

Mike Andrews
Director of Extrusion Applications
Metabolix Core PHA Technology
Technology platform for bio-based polymers

Biodegradable
- Soil (Ambient)
- Home Compost
- Industrial Compost
- Fresh Water
- Marine Water
- Anaerobic

Biobased
Sugar used as feedstock

Products
PHA’s can be compounded and processed using conventional plastics processing equipment.

Fermentation
Microbial engineering enables high polymer accumulation in microbes.
Metabolix PHA Biopolymer Portfolio

Key features

- **100% Bio-based Polymers**
 - Made from renewable materials: industrial sugars & non-food plant oils

- **Copolyester chemistry**
 - MWt (200,000 - 700,000 gmol\(^{-1}\))
 - Semi-crystalline and amorphous structures
 - \(T_g\): -30 to +5°C, \(T_m\): 120 to 180°C

- **FDA food contact**: FCN1119 for PHA copolymers
 - Single use (conditions B through H)
 - In preparation for new copolymers (FDA, EFSA)

- **Biodegrade in most environments with microbial activity**
 - Hot to cold **aerobic** conditions: composting, soil, marine
 - Meso- & thermophilic **anaerobic**: high & low solids
Metabolix has Extended PHA Technology to Enable Amorphous PHA Grades

Metabolix PHA Family of Copolymers

![Graph showing the relationship between Tg (C) and % Crystallinity against mole % Comonomer with a highlighted amorphous range.](image-url)
Target Markets

Emphasis on Performance and Value as an Additive or Modifier

- **PLA modification** – 100% bio-based and compostable
- PVC modification
- Aqueous dispersion (latex)
- Micropowders for personal care products
Metabolix has Developed PLA / PHA Masterbatch Products Relative to Each Thermoplastic Process

<table>
<thead>
<tr>
<th>Converting Process</th>
<th>PLA Relative Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet/Profile/Clear Film (high MW)</td>
<td>4.0</td>
</tr>
<tr>
<td>Inj. molding (std flow), Foam, Film</td>
<td>3.3</td>
</tr>
<tr>
<td>Fibers (melt spun, spun bond non-wovens)</td>
<td>3.1</td>
</tr>
<tr>
<td>Inj. molding (high flow)</td>
<td>2.5</td>
</tr>
<tr>
<td>Fibers (melt blown non-wovens)</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Metabolix PHA Amorphous Modifiers

- Flexibility improvement is possible without lowering the Tg of the PLA (not a miscible plasticizer)
Metabolix PHA Amorphous Modifiers

- Increased Toughness of Injection Molded Products
Toughening PLA Sheet
Dart impact improves with a-PHA modifier

- Dart impact strength increase
- Reduced brittleness
- Improved ductility & elongation

Sheet thickness ~ 15 mil (0.37 mm)
Dart 1.5” hemisphere, 752 gm, 26” height

Dart Impact at different PHA %

Sheet thickness ~ 15 mil (0.37 mm)
Dart 1.5” hemisphere, 752 gm, 26” height

0%
5%
10% a-PHA

© 2014 Metabolix
PLA Sheet Trimming
Reduced brittle edge fracture

20x, without a-PHA
Crack propagation ahead of the cutting edge; splinters

20x, with 5% a-PHA
Rounded edges with reduced stress fracture & propagation

Refractive Indices

<table>
<thead>
<tr>
<th>Polymer</th>
<th>n_D^{25}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA</td>
<td>1.48 – 1.49</td>
</tr>
<tr>
<td>a-PHA</td>
<td>1.48 – 1.49</td>
</tr>
</tbody>
</table>
PLA/PHA film has higher tensile yield strength like HDPE that enables greater load bearing & thinner gauges

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>LDPE** (typical)</th>
<th>PBAT/PLA*</th>
<th>PLA/a-PHA*</th>
<th>HDPE*** (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melt index</td>
<td>g/10 min 2.16 kg @ 190°C</td>
<td>2.0</td>
<td>2.5</td>
<td>2.0</td>
<td>0.06</td>
</tr>
<tr>
<td>MD Tear</td>
<td>g/mil</td>
<td>350</td>
<td>250</td>
<td>200</td>
<td>11</td>
</tr>
<tr>
<td>Dart impact</td>
<td>g/mil</td>
<td>110</td>
<td>300</td>
<td>275</td>
<td>340</td>
</tr>
<tr>
<td>Tens. Yield</td>
<td>MPa</td>
<td>16</td>
<td>15</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>MPa</td>
<td>183</td>
<td>445</td>
<td>1200</td>
<td>945</td>
</tr>
</tbody>
</table>

* Data of Metabolix 1.0 mil
** Data of NA952-000 1.25mil LDPE from LyondellBasell
*** Data of L5005 0.5 mil HDPE from LyondellBasell
PHA Modifiers Bring Significant Softness to PLA Fibers at Low Loading Level

- Addition of PHA in PLA tested in melt spun fibers, melt blown and spunbond non-wovens
- Incorporating PHA leads to improved fiber flexibility
- Flexibility & elongation lead to finer filaments & improved drape
- Reduction in “hand,” gives a soft, silky feel in woven and non-woven products
Target Markets

Emphasis on Performance and Value as an Additive or Modifier

- PLA modification – 100% bio-based and compostable
- PVC modification
 - Aqueous dispersion (latex)
 - Micropowders for personal care products
“Plastifier” - Flexible & Semi-rigid PVC
- High MW polymeric, soft amorphous modifier
- Excellent miscibility
- Improved permanence compared to primary plasticizers

Process Aid – Rigid and Recycled PVC
- Excellent miscibility – filler dispersion & fusion
- Lower process torque
- Improved dispersion, fusion & homogeneity of mixed PVC recycle streams
PHA Reduces Plasticizer Migration

Increasing a-PHA loading reduces conventional plasticizer migration.

ISO 177: Calculated plasticizer loss in 1 year at 70°C

Weight Loss vs. Hardness

- **DINP** – Conventional plasticizers
- **PHA** – Bio-based high MW polymeric modifier
- **ECR** – Synthetic polymeric modifier (*Ethylene Copolymer Resin*)
PHAs are Effective in Migration Reduction

- PHAs display similar performance to an ethylene copolymer resin (ECR)
 - lower migration response than conventional plasticizers
 - favorable impact on conventional plasticizer material performance

- PHA modifiers are inherently miscible in PVC

 \[\text{More easily processed and incorporated than synthetics} \]

- PHAs are 100% bio-based and food-contact approved

 \[\text{Increases bio-content, supports broad range of applications} \]
Target Markets

Emphasis on Performance and Value as an Additive or Modifier

- PLA modification – 100% bio-based and compostable
- PVC modification
- Aqueous dispersion (latex)
- Micropowders for personal care products
Metabolix PHA Dispersion Technology

- Aqueous PHA dispersion (no VOCs)
 - No plasticizers or coalescing solvents

- Semi-crystalline PHA polymer resin
 - Polymer T_m: 160 to 180ºC, T_g: -5ºC

- High solids content (55%)
 - Viscosity range 300-550 cps
 - Dilutable without coagulation (no additional stabilizer)

- Particle size D50 1-2 microns
PHA Latex Solutions for Coated Paper and Cardboard

Metabolix aqueous PHA latex provides significant benefits:

– **Water and grease resistant coating** for paper/cardboard
– **Good heat sealability**: coating to coating, paper to coating
– **Allows repulping / recycling** of coated paper and cardboard
– Complements *inherent biodegradability* of paper and cardboard
Attributes in Coating or Modifying Paper

- **Coating performance (Tappi T441 0m-04)**
 - 50# Kraft & cup stock at ~20 g/m² coat weight
 - 30 min **Cobb results 5-20 g/m²** moisture gain
 - Variables include paper quality, drying and annealing conditions

- **Grease Resistance (Kit Test – Scale 0-12, 12 Good)**
 - Tappi value of ~10 flat (T 559 cm-12)
 - Tappi value of ~5-9 folded (T 465 sp-10)

- **Repulping**
 - Western Michigan University tests show 97% repulpability
 - Residual PHA is biodegradable in wastewater
Target Markets
Emphasis on Performance and Value as an Additive or Modifier

- PLA modification – 100% bio-based and compostable
- PVC modification
- Aqueous dispersion (latex)
- **Micropowders for personal care products**
Properties of PHA Micropowders
Particle Size, Structure & Hardness

- Particle sizes can be tailored to the application
 - Ground micropowder D50 from 10-500 µm

- PHA hardness - from harder/more crystalline to softer

 Harder (Shore D: 78) - INCI registered
 - ~60% crystallinity

 Softer (Shore D: 59) - INCI registered
 - ~25% crystallinity
Mirel™ PHAs Biodegrade Rapidly in Active Microbial Marine Environments

ASTM D7081 Standard Specification requires > 30% biodegradation at 180 days
- Mirel PHA films achieved >30% biodegradation in 2 days
- At 13 days, Mirel PHA had exceeded 80% biodegradation, similar to cellulose
- Without microbial activity, PHA will not biodegrade even in aqueous formulations
PHA Micropowders
For use in cosmetic and personal care products

- Micropowders are common in personal care, oral care, beauty products, inks & adhesives

- Marine degradable PHA are replacements for non-degradable PE & synthetic wax powders
 - Demonstrated PHA marine biodegradability (independently certified) in fresh and marine saltwater/ocean environments
 - Heavier than water (non-floating). Promotes higher rate of biodegradation in sediment.

- Broad formulation compatibility
 - 100% bio-based (renewable feed-stocks)
 - Compatible with commonly used colorants
 - More versatile than other natural materials (e.g. walnut shells)
PHAs are Effective Performance Additives in a Range of Applications

- 100% bio-based & biodegradable
- PHA range includes unique amorphous PHA technology
- Effective in improving flexibility & toughness in brittle polymers, e.g. PLA & PVC
- New coatings & micropowders technology advancing

Thank You
Mirel™ PHA Polymeric Modifiers & Additives

AddCom 2014
Barcelona
October 21-22, 2014

Mike Andrews
Director of Extrusion Applications